Abstract—A simple wide band equivalent circuit for the surface impedance of conducting sheets is introduced into the three dimensional Yee FDTD scheme. The model is based on the plane skin effect, thus the frequency dependence of losses and of the inner inductivity is included. Stability considerations are presented as well as numerical results for the attenuation coefficient of microstrip and coplanar waveguides in comparison to reference data.

I. INTRODUCTION

Metallic losses in microwave waveguides and circuits cannot be treated efficiently using straight forward FDTD simulations, since the skin effect is much smaller and faster than the wave propagation itself. Thus the simulation time would be increased by magnitudes.

Therefore thin conducting sheet approximations have been introduced into the Yee [1] FDTD scheme, which work well in mono-frequent and narrow band applications [2]–[4].

This contribution presents a conducting sheet approximation suitable for wide band FDTD simulations, which properly models losses as well as the inner inductivity under assumption of the plane skin effect.

In section II a simple approximative wide band equivalent circuit consisting of two inductors and three resistors is proposed for modeling the sheet’s surface impedance.

Section III shows how this circuit is introduced into Yee’s FDTD scheme, yielding the need of only two additional nodes per tangential electric node on the conducting sheet. Stability considerations follow in section IV.

Numerical results for the attenuation coefficient of microstrip and coplanar waveguides are given in section V and compared to those of measurements, static two dimensional FD calculations [5] and an approximate formula for MSL ohmic losses [6].

II. A SIMPLE EQUIVALENT CIRCUIT FOR THE SURFACE IMPEDANCE OF THIN CONDUCTING SHEETS

Assuming a plane skin effect, the surface admittance Y_s (resp. the admittance of a square part of the sheet $Y_{1\square}$) can be written as

$$ Y_s = 2Y_0 = \frac{2H_s}{E_s} = \frac{G_{0\square}}{\omega_0} \frac{\tanh((1+j)\sqrt{\Omega})}{(1+j)\sqrt{\Omega}}, $$

Herein t is the sheet’s thickness and σ is its conductivity.

A second order rational approximation\(^2\) for real value arguments x yields

$$ f(x) = \frac{\tanh \sqrt{x}}{\sqrt{x}} \approx \frac{0.00037835 x^2 + 0.089376 x + 0.999241}{0.00936184 x^2 + 0.419520 x + 1}, $$

For the needed complex $x = (1+j)^2 \Omega$, the relative error $|f(x) - h(x)|/|f(x)|$ is less than 3 % for $\Omega < 10$, less than 6 % for $\Omega < 30$ and less than 10 % for $\Omega < 50$.

Figure 1 shows an equivalent circuit proposed to realize $Y_{1\square} \approx G_{0\square} h(\Omega)$. As seen in section III, this circuit can be easily introduced into the Yee scheme.

A formulation, that does not depend on the sheet’s parameters κ and t, is

$$ h((1+j)^2 \Omega) = g + \frac{1}{r_1 + j\Omega l_1} + \frac{1}{r_2 + j\Omega l_2}, $$

with dimensionless

$$ l_i = G_{0\square} \omega_0 L_i, \quad r_i = G_{0\square} R_i, \quad g = \frac{G}{G_{0\square}}, \quad i \in \{1,2\}. $$

\(^1\)Corresponding to the currents in the two inductors of the equivalent circuit.

\(^2\)Obtained using the “minimax” module of the “numapprox” package in the symbolic algebra program MAPLE V(TM). Optimization criterion was minimization of the maximum relative error.

\(^3\)For a 2 \mu m thick Au sheet $\omega_0/[2\pi]$ is approx. 6 GHz, yielding $\Omega < 10$ up to a frequency of 60 GHz.
Equation (3) can be solved analytically, resulting in

\[r_1 = 7.482301652, \quad r_2 = 1.211859662, \]
\[l_1 = 0.353893318, \quad l_2 = 0.959481195, \]
\[g = 0.040414818. \]

III. FDTD IMPLEMENTATION OF THE EQUIVALENT CIRCUIT

To obtain an equivalent circuit for the FDTD method itself, the Yee scheme for inhomogeneous material with electric and magnetic losses can be written in a short operator formulation [7], [8].

Figure 2 shows the unit cell of the well known Yee FDTD scheme. Field components as well as the cell sizes and the material properties are functions of the discrete position \(X = (i, j, k)^T \). Field components and other properties belonging to the cell \(X \) are shown in the figure. For simpler writing, component and direction indices are numbered in a modulo three sense, e.g. \(E_0 \equiv E_x, E_1 \equiv E_y, E_2 \equiv E_z \) and again \(E_3 \equiv E_x, E_4 \equiv E_y, E_5 \equiv E_z \). Upper indices \(E \ r s p. \ H \) are used for the electric resp. magnetic conductivity \(\sigma^E \ r s p. \ \sigma^H \) and for the sub cell sizes \(\Delta^E \) and \(\Delta^H \).

A lower index “\(\xi \)" stands for \(\xi + 1 \), a "\(- \)" stands for \(\xi - 1 \). The shift operators \(\xi^E \) and \(\xi^H \) are defined by \(\xi^E_H(X) = H_y(X + \xi^E) \) and \(\xi^E_H(X) = H_y(X - \xi^H) \), with the unit vector in \(\nu \)-direction \(\xi^\nu \).

![Fig. 2. Yee cell at the position X with the field components and parameters accounted to this cell.](image)

The time continuous Yee scheme for lossy material and graded mesh discretization is

\[
(\varepsilon_\nu^{\nu} \partial_t + \sigma^E_\nu^{\nu})E_\nu = \frac{1}{\Delta^E_\nu} (\xi^E_+ - 1) H_\nu - \frac{1}{\Delta^E_\nu} (\xi^E_- - 1) H_\nu, \\
(\mu_\nu^{\nu} \partial_t + \sigma^H_\nu^{\nu})H_\nu = \frac{1}{\Delta^H_\nu} (\xi^H_+ - 1) E_\nu - \frac{1}{\Delta^H_\nu} (\xi^H_- - 1) E_\nu
\]

An equivalent circuit formulation for (6) is proposed in [7]. A more general formulation, suitable for graded mesh FDTD schemes, requires magnetic and electric voltages to be introduced to maintain symmetry of the equivalent circuit. With \(\Theta^E_\nu = E_\nu \Delta^E_\nu \) and \(\Theta^H_\nu = H_\nu \Delta^H_\nu \), equation (6) yields

\[
(C_\nu \partial_t + G_\nu)\Theta^E_\nu = (\xi^E_+ - 1) \Theta^H_\nu - (\xi^E_- - 1) \Theta^E_\nu, \\
(L_\nu \partial_t + R_\nu)\Theta^H_\nu = (\xi^H_+ - 1) \Theta^E_\nu - (\xi^H_- - 1) \Theta^E_\nu
\]

with

\[
C_\nu = \frac{\Delta^H_\nu \Delta^H_\nu}{\Delta^E_\nu} \varepsilon_\nu, \quad G_\nu = \frac{\Delta^H_\nu \Delta^H_\nu}{\Delta^E_\nu} \sigma^E_\nu, \\
L_\nu = \frac{\Delta^H_\nu \Delta^H_\nu}{\Delta^H_\nu} \mu_\nu, \quad R_\nu = \frac{\Delta^H_\nu \Delta^H_\nu}{\Delta^H_\nu} \sigma^H_\nu.
\]

Figure 3 shows an electrical field node of the equivalent circuit belonging to (8). To implement the conducting sheet approximation, all electrical nodes belonging to tangential field components in the conductor are modified as shown in figure 4.

![Fig. 3. Equivalent circuit for an electrical field node in the Yee scheme.](image)

Two additional nodes \(\Theta_{\nu,1} \) and \(\Theta_{\nu,2} \), which are treated like magnetic nodes in the time stepping scheme, are introduced. The 'parasitic' capacitor \(C_\nu \) is needed to leave the time stepping algorithm unchanged, its value (discussed in section IV) can be chosen very small, thus it does not disturb the surface admittance approximation.

Since \(\Theta^E_\nu = E_\nu \Delta^E_\nu \) and \(\Theta^H_\nu = H_\nu \Delta^H_\nu \), for the tangential magnetic field, the proper parameters to realize the conducting sheet’s surface admittance \(Y_1 \) are

\[
G_\nu = \frac{\Delta^H_\nu \Delta^H_\nu}{\Delta^E_\nu} G_{0,\square} g, \\
L_{\nu,1} = \frac{1}{G_{0,\square} \Theta_{0,\square}} l_1, \quad R_{\nu,1} = \frac{1}{G_{0,\square} \Theta_{0,\square}} r_1, \\
L_{\nu,2} = \frac{1}{G_{0,\square} \Theta_{0,\square}} l_2, \quad R_{\nu,2} = \frac{1}{G_{0,\square} \Theta_{0,\square}} r_2.
\]

The summation of the \(\Theta^H_\nu \) can be done using four gyrators in parallel [7], in this case, the \(\Theta^H_\nu \) nodes have the same structure as the \(\Theta^E_\nu \) nodes. An alternative is to use four 1:1 transformers, in this case, \(\Theta^H_\nu \) is implemented as a current.
For the empirical validation of the approximation, a microstrip and a coplanar waveguide, for which reference data is available, have been simulated to obtain attenuation coefficients.

Both are on a 250 \(\mu \text{m} \) \(\text{Al}_2\text{O}_3 \) substrate, the conducting \(\text{Au} \) \((\sigma = 41 \text{ MA/Vm})\) films are 5 \(\mu \text{m} \) thick. The microstrip line’s width is 225 \(\mu \text{m} \), yielding a characteristic impedance of approx. 53.2 \(\Omega \). The coplanar waveguide has an inner conductor’s width of \(w = 125 \mu \text{m} \), the distance between the inner sides of the outer conductors is \(d = 225 \mu \text{m} \), the characteristic impedance is approx. 48.6 \(\Omega \).

A \(l = 10 \text{ mm} \) long part of the waveguides was used for the simulation.

Since a very high accuracy is needed for the simulation of losses < 0.1 dB,

- A Gaussian pulse modulated with a sinus function has been used for excitation in an electric wall. It has been observed, that an unmodulated Gaussian pulse excites small static fields, which disturb the discrete Fourier transform needed for postprocessing.

- Approx. 5 mm and 15 mm away from the exciting wall, the voltages on the transmission lines have been recorded for attenuation calculation.

- No absorbing boundary conditions have been used. The waveguides’ total lengths have been chosen big enough, so that the reflected pulse does not disturb the simulation.

The MSL was discretized using 10 cells for both, the conductor’s width and the substrate height. The backside metalization was simulated as a conducting sheet, too. The CPW waveguide’s inner conductor was discretized using 11 cells, the gap with 5 cells. The substrate was discretized with an eight cell graded mesh.

Figure 5 shows a comparison of the approximative surface admittance \(Y_1 \) obtained from voltage and current FDTD results for a microstrip waveguide’s backside metalization and the theoretical results from (1). Obviously the conductance as well as the inner inductivity are very accurately modeled in the whole frequency range.

The Figures 6 and 7 compare the simulated attenuation with measurements, static FD results and an approximation for MSL losses. The FDTD results do agree very well with the reference data over the whole frequency range. Radiation losses have not been taken into account in the FDTD simulations.

VI. Conclusions

A wide band FDTD model based on a simple equivalent circuit has been presented for conducting sheet modeling. The
sheet’s conductance as well as its the inner inductivity, depending on the frequency due to the skin effect, are properly modeled. Excellent results have been obtained simulating lossy microstrip and coplanar waveguides. Because the approximation proposed here has almost no impact on computation time and computer memory consumption, it is suitable for the simulation for most passive planar microwave circuits.

REFERENCES

